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Meshless Galerkin analysis of Stokes slip flow with boundary
integral equations
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SUMMARY

This paper presents a novel meshless Galerkin scheme for modeling incompressible slip Stokes flows
in 2D. The boundary value problem is reformulated as boundary integral equations of the first kind
which is then converted into an equivalent variational problem with constraint. We introduce a Lagrangian
multiplier to incorporate the constraint and apply the moving least-squares approximations to generate
trial and test functions. In this boundary-type meshless method, boundary conditions can be implemented
exactly and system matrices are symmetric. Unlike the domain-type method, this Galerkin scheme requires
only a nodal structure on the bounding surface of a body for approximation of boundary unknowns. The
convergence and abstract error estimates of this new approach are given. Numerical examples are also
presented to show the efficiency of the method. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Stokes equation with slip boundary condition plays an important role in the simulation of flows
with free surface, or at high angles of attack. In the flow problems, such as coating, the flow past
chemically reacting walls, the classical no-slip condition of Stokes is no longer valid, for which the
slip boundary condition is the appropriate physical model. The numerical solution of the practical
problems of these kinds has been usually addressed with classical numerical methods, such as the
finite element method (FEM) [1–5] and the boundary element method (BEM) [6–10]. However,
in using these methods, meshing is a burdensome and expensive task for some problems, such as
complicated boundary problems and moving boundary problems.
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1202 X. LI AND J. ZHU

In recent years, meshless methods have attracted considerable attention due to their ability to
alleviate some of the shortcomings of the traditional procedures [11–13]. As opposed to mesh-based
methods, they avoid grid generation and the approximate solution is constructed entirely based on
a cluster of scattered nodes. Different kinds of meshless methods have been proposed, such as the
element free Galerkin method (EFGM) [11, 14], the reproducing kernel particle method (RKPM)
[15, 16], the moving least-square reproducing kernel (MLSRK) method [17], the generalized FEM
[18], the finite point method [19], the point interpolation method [20], the h-p meshless method
[21], the least-squares meshfree method [22], and so on.

The idea of meshless has also been applied in boundary integral equations (BIEs), such as the
meshless local boundary integral equation (LBIE) method [23], the boundary node method (BNM)
[24, 25], the boundary cloud method [26] and the boundary point interpolation method [27]. The
LBIE method is equivalent to a sort of meshless local Petrov–Galerkin approach [28], which uses
local weak forms over a local sub-domain and shape functions from the moving least-squares
(MLS) approximations [11, 29]. The LBIE method, however, is not strictly a boundary method
since it requires evaluation of integrals over certain surfaces (called Ls in [23]) that can be
regarded as ‘closure surfaces’ of boundary elements. The BNM is formulated using the MLS
approximations and the technique of BIEs. Compared with the LBIE method, the BNM and the
rest of the BIEs-based meshless methods aforementioned can reduce the dimensionality of the
original problem. Although these BIEs-based meshless methods have achieved remarkable progress
in solving a broad class of boundary value problems, there still exist many problems related to
their efficient implementation. Among these are difficulties in satisfying boundary conditions when
their shape functions lack the delta function property, the system matrices of many boundary-type
methods are non-symmetric, and the theoretical basis of these methods is just being studied and
is far from completion.

In this paper we introduce a new meshless scheme for the 2-D steady incompressible Stokes
equations with slip boundary condition. By combining the simple layer potential used for the
Stokes problem [30, 31] with the slip boundary condition, we obtain a set of BIEs that is suitable
for the interior as well as the exterior boundary value problems. Then Galerkin procedure can be
applied, in which trial and test functions are constructed by the MLS approximations. Here, the
problem of finding the velocity is separated from that of finding the pressure. From the analytic
point of view, 2-D problems are more difficult to handle than 3-D owing to the behavior of the
solution at infinite. The trial functions in the variational formulation corresponding to the BIEs of
2-D case have constraint where the Lagrangian multiplier approach [32, 33] will be introduced.

The present paper is a first attempt in applying a meshless Galerkin method of boundary type
to Stokes slip flows. The main contributions of this paper can be summarized as follows:

(1) A boundary integral expression is gained for the solution of the Stokes slip flow. Then a
variational formulation based on the integral equation is established.

(2) A meshless Galerkin scheme is developed for the variational formulation. Such a scheme
can reduce one in dimension, thus it is especially suitable for exterior problems. Besides, this
scheme yields symmetric stiffness matrix and a simplified treatment of boundary conditions.

(3) A Lagrangian multiplier is introduced to incorporate constraint conditions.
(4) A solid theoretical foundation of the present method is provided in detail. The rates of

convergence for both velocity and pressure are derived in Sobolev spaces.
(5) Some selected Stokes problems are solved to illustrate the capability of the developed

algorithms. The numerical results are in consistency with the theoretical analysis.
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The rest of this paper is outlined as follows. Section 2 describes the MLS approximation
scheme. In Section 3, our meshless Galerkin approach is described for solving Stokes problems.
The convergence of this method is stated in Section 4. Section 5 provides some numerical results.
Section 6 contains conclusions.

2. THE MLS METHOD

2.1. Notations

Let � be a smooth, simple closed curve in the plane and let � and �′ denote its interior and
exterior, respectively. A generic point in R2 is denoted by x=(x1, x2) or y=(y1, y2).

For any point x∈�, we use �(x) to denote the influence domain of x. Let QN ={xi }Ni=1 be an
arbitrarily chosen set of N boundary nodes xi ∈�. The set QN is used for defining a finite open
covering {�i }Ni=1 of � composed of N balls �i centered at the points xi , i=1,2, . . . ,N , where
�i =�(xi ) is the influence domain of xi .

Assume that �(x) boundary nodes lie on �(x). Then, we use the notation I1, I2, . . . , I� to express
the global sequence number of these nodes, and define ∧(x)={I1, I2, . . . , I�}.

Let wi , i=1,2, . . . ,N , denote weighting functions that belong to the space C�
0 (�i ), ��0, with

the following properties:

wi (x)>0, x∈�i∑
i∈∧(x)

wi (x)=1 ∀x∈�

Besides, we use the notation

�i ={x∈� :xi ∈�(x)}, 1�i�N (1)

for the set of boundary points whose influence domain includes the boundary node xi . For different
boundary point x, because �(x) varies from point to point, �i ≡�i if and only if the radii of �(x)
is a constant for any x∈�.

Let � be an arbitrary real number, then we denote by H �(�) the Sobolev spaces as well as
their interpolation spaces on � for non-integer � [34]. Moreover, we define the following weighted
Sobolev space [31]:

W 1
0 (�′)=

{
v∈D′(�′) : v√

1+r2 ln(2+r2)
∈L2(�′), �v

�xi
∈L2(�′), i=1,2

}

where r =
√
x21 +x22 . It is a reflexive Banach space equipped with its natural norm

‖v‖W 1
0 (�′) =

(∥∥∥∥ v√
1+r2 ln(2+r2)

∥∥∥∥
2

L2(�′)
+

2∑
i=1

∥∥∥∥ �v

�xi

∥∥∥∥
2

L2(�′)

)1/2

Observe that all the local properties of the space W 1
0 (�′) coincide with those of the Sobolev space

H1(�′). As a consequence, the traces of these functions on � satisfy the usual trace theorems.
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2.2. The MLS technique

In the MLS method, the numerical approximation starts from a cluster of scattered nodes instead
of elements. Assume that x(s)∈�, the MLS approximation for a given function v is defined as
[11, 24, 29]

v(x)≈Mv(x)=
N∑
i=1

�i (x)vi (2)

where M is an approximation operator, and

�i (x(s))=

⎧⎪⎨
⎪⎩

�∑
j=0

Pj (s)[A−1(s)B(s)] j i , i ∈∧(x)

0, i /∈∧(x)

(3)

and the matrixes A(s) and B(s) being defined by

A(s)= ∑
i∈∧(x(s))

wi (s)P(si )PT(si ) (4)

B(s)=[wI1(s)P(sI1),wI2(s)P(sI2), . . . ,wI�(s)P(sI�)] (5)

in which s is a local co-ordinate of the boundary point x on �, P(s) is a vector of the polynomial
basis, �+1 is the number of terms of the monomials.

In order to make sense of the definition of the MLS approximations, the matrix A(s) must be
invertible. The corresponding work can be found in References [21, 35].

For our subsequent error analysis, the following conditions will be assumed from now on:

A1. There exists a non-negative integer ��� such that the MLS shape generating functions
�i (x)∈C�(�) and the boundary � is a C� curve.

A2. There is a constant h such that the radii of weight functions is less than h.
A3. There exist non-negative integers K1(x)�� and K2(x) such that for any x∈�, there are at

least K1(x) boundary nodes, and at most K2(x) boundary nodes lie on �(x).
A4. There is a uniform bound of the MLS shape function and its derivatives. Namely, constants

C�1 and C�2 are independent of h such that C�1h− j�
∑

|�|= j ‖���i (x)‖L∞(�)�C�2h− j ,
0� j��, 1�i�N .

Remark 2.1
From Reference [21], if monomials Pj ( j =0,1, . . . ,�) and weight functions wi (1�i�N ) are �
times continuously differentiable, then �i ∈C�(�).

Remark 2.2
Assumption (A3) is quite natural since otherwise as the number of boundary nodes lying on a
local area increases, the shape functions tend to be more and more linearly dependent in the local
area.

We list below some properties of the MLS shape generating functions �i .

Property 2.1 (Liu et al. [17])∑N
i=1 D

j�i (s)(si −s)k =k!� jk , 0� j��, 0�k��.
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Property 2.2
�i (x)∈C�

0(�i ), 1�i�N .

This property follows immediately from the fact that the weight functions wi (x) have compact
supports.

Property 2.3
There exists a constant C independent of h such that

‖�i (x)‖Hk(�)�Chm−k‖�i (x)‖Hm(�), 1�i�N , −��m�k, 0�k�� (6)

Proof
According to Assumption (A4), we have

|�i |2Hk(�)
=
∫

�

∑
|�|=k

|D��i (x)|2 dSx�
∫

�
(Ck2h

−k)2 dSx, 0�k��

|�i |2Hm(�) =
∫

�

∑
|�|=m

|D��i (x)|2 dSx�
∫

�
(Cm1h

−m)2 dSx, 0�m��

thus

|�i |Hk(�)�Chm−k |�i |Hm(�), 0�m�k�� (7)

On the other hand,

‖�i‖2H0(�)
�‖�i‖Hm(�)‖�i‖H−m(�)�Chm‖�i‖Hm(�)‖�i‖H0(�), −��m�0 (8)

Hence, applying (7) and (8) yields

‖�i‖Hk(�)�Ch−k‖�i‖H0(�)�Chm−k‖�i‖Hm(�), −��m�0, 0�k�� (9)

By gathering (7)–(9) we have ended the proof. �

The following approximation theorem gives an approximation estimate for the MLS approxi-
mations, which is central to the convergence proof of our meshless Galerkin method.

Theorem 2.1
Assume that v∈H �+1(�). Let Mv=∑N

i=1�ivi , then

‖v−Mv‖Hk(�)�Ch�+1−k‖v‖H �+1(�), 0�k�� (10)

where the constant C is independent of h.

This result was proved by Han and Meng [15] in the context of the RKPM, and by Liu et al.
[17] in the MLSRK approximation method. The proof of the theorem above is exactly along the
same lines and thus we shall omit the proof.
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3. MESHLESS GALERKIN SCHEME FOR STOKES EQUATIONS USING BIEs

In this section, a meshless Galerkin method for the approximation of the incompressible Stokes
equations is introduced. In this approach, meshless shape functions are constructed with the MLS
technique and are used in a Galerkin setting for the approximation of the weak form of BIEs.

3.1. BIEs and variational formulation

We consider the interior and exterior Stokes problems as

−	�u+∇ p=0 in � or �′ (11)

∇ ·u=0 in � or �′ (12)

u·n=g on � (13)

n·
(u, p) ·s=0 on � (14)

where u=(u1,u2) is the velocity of the fluid, p is the pressure, 	 is the constant positive viscosity
coefficient, n=(n1,n2) is the unit exterior normal to �, s=(�1,�2) is the tangent vector to �, g
is a given function, and 
(u, p) is the stress tensor of the form

(
(u, p))i j =−p�i j +2	εi j (u) (15)

where �i j is the Kronecker symbol and

εi j (u)=(ε(u))i j = 1
2 (ui, j +u j,i )

is the deformation tensor. In the case of the exterior problem, we append to (11)–(14) the following
condition at infinity:

|ui (x)|=O(1), i=1,2, |x|→∞
Condition (13) is an essential boundary condition, whereas condition (14) is a natural one. The

incompressibility condition (12) implies the following compatibility condition:∫
�
g(x)dSx=0

which must be satisfied by datum g from (13).
In order to derive a proper weak formulation of problem (11)–(14), we introduce Sobolev space

V ={v∈(H1(�))2∪(W 1
0 (�′))2,∇ ·v=0}

From Green’s formula and the boundary condition (14), we have

2	
∫

�
ε(u) ·ε(v)dx−

∫
�

(−	�u+grad p) ·vdx

=
∫

�
n·
(u, p) ·vdSx

=
∫

�
(n·
(u, p) ·n)(v ·n)dSx

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1201–1226
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2	
∫

�′
ε(u) ·ε(v)dx−

∫
�′

(−	�u+grad p) ·vdx

=−
∫

�
n·
(u, p) ·vdSx

=−
∫

�
(n·
(u, p) ·n)(v ·n)dSx

for any u,v∈V . We then get, by adding the above two formulas,

2	
∫

�∪�′
ε(u) ·ε(v)dx=

∫
�

(t ·n)(v ·n)dSx ∀u,v∈V (16)

where t stands for the jump through � of n·
(u, p)

t=[n·
(u, p)]=(n·
(u, p))int� −(n·
(u, p))ext� (17)

The simple layer potential corresponding to Stokes equation [30, 31] can be adapted to combining
the boundary condition (14), if we take the decomposition of the fundamental solution into orthog-
onal directions

ui (y) =
∫

�
t(x) ·Ui (x,y)dSx+�i

=
∫

�
t(x) ·((Ui ·n)n+(Ui ·s)s)dSx+�i

=
∫

�
(t(x) ·n(x))(Ui (x,y) ·n(x))dSx+�i

p(y) = −
∫

�
t(x) ·P(x,y)dSx

= −
∫

�
t(x) ·((P ·n)n+(P ·s)s)dSx

= −
∫

�
(t(x) ·n(x))(P(x,y) ·n(x))dSx

in which n=(�1,�2) is a constant vector, Ui =(Ui1,Ui2) and P=(P1, P2) are the fundamental
solutions of Stokes equation

Ui j (x,y)= 1

4�	

[
�i j ln

1

|x−y| +
(xi − yi )(x j − y j )

|x−y|2
]
, i, j =1,2 (18)

Pj (x,y)= x j − y j
2�|x−y|2 , j =1,2 (19)
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Putting q= t ·n, we finally obtain the expression of the solution of problem (11)–(14) as

ui (y)=
2∑
j=1

∫
�
q(x)Ui j (x,y)n j (x)dSx+�i , y∈R2, i=1,2 (20)

p(y)=−
2∑
j=1

∫
�
q(x)Pj (x,y)n j (x)dSx, y∈R2/� (21)

in which the intermediate variable q(x) is the jump through � of normal stress component
n·
(u, p) ·n.

In addition to the integral equations above, we have to consider the compatibility condition.
Taking v=n∈R2⊂V in formula (16), we derive the compatibility condition as follows:∫

�
q

2∑
j=1

� j n j dS=0 ∀n=(�1,�2)∈R2 (22)

Now giving

g∈H1/2
0 (�)=

{

∈H1/2(�),

∫
�


dS=0

}

the following integral equations of the first kind define a continuous mapping g→q:

g(y)=
2∑

i=1
ni (y)

(
2∑
j=1

∫
�
q(x)Ui j (x,y)n j (x)dSx+�i

)
, y∈� (23)

We emphasize that (23) is suitable for the solution of the exterior as well as the interior Stokes
problem.

As the pressure p could be determined within an arbitrary additive constant, we know from
(15) and (17) that t∈(H−1/2(�))2 could only be determined within a vector proportional to the
normal n to �; so we see that q∈H−1/2(�) can be determined up to an arbitrary constant. We
then consider the inverse problem, giving

q∈H−1/2
00 (�)=

{

∈H−1/2(�)/R,

∫
�



2∑
j=1

� j n j dS=0 ∀n∈R2

}

From (16) we get a variational formula

2	
∫

�∪�′
ε(u)·ε(v)dx=

∫
�
q

2∑
j=1

v j n j dS ∀v=(v1,v2)∈V (24)

The bilinear form

a(u,v)=2	
∫

�∪�′
ε(u)·ε(v)dx=	

2∑
i=1

∫
�∪�′

gradui ·gradvi dx

is coercive on V , since here the semi-norm is equivalent to the norm in V [31], i.e.

a(u,u)=	
2∑

i=1

∫
�∪�′

|gradui |2 dx=	|u|2V�C‖u‖2V , C>0 (25)
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Moreover,
∫
� q
∑2

j=1 v j n j dS is a continuous linear functional on V . Therefore, by Lax–Milgram
theorem there exists a unique function u∈V that satisfies the variational equation (24); then by
Trace theorem we can get g∈H1/2

0 (�).
To summarize, we have shown the following theorem.

Theorem 3.1
The BIE (23) defines an isomorphism from H1/2

0 (�) onto H−1/2
00 (�), which admits the following

variational problem:

Find q ∈ H−1/2
00 (�) such that ∀q ′ ∈H−1/2

00 (�)

b(q,q ′) = 〈g,q ′〉
(26)

with

b(q,q ′)=
2∑

i, j=1

∫
�

∫
�
Ui j (x,y)n j (x)q(x)ni (y)q ′(y)dSx dSy

〈g,q ′〉=
∫

�
g(y)q ′(y)dSy, g∈H1/2

0 (�), q ′ ∈H−1/2
00 (�)

Theorem 3.2
Problem (26) has one and only one solution.

Proof
Let u and ũ be the solutions of (24) respectively corresponding to q and q̃; if their traces on �
verify the integral equation (23), then we have by the construction

b(q, q̃) =
2∑

i, j=1

∫
�

∫
�
Ui j (x,y)n j (x)q(x)ni (y)q̃(y)dSx dSy

= 〈u·n, q̃〉=〈ũ ·n,q〉

= 	
2∑

i=1

∫
�∪�′

gradui ·grad ũi dx

Besides, substituting (25) into (24) and (26), we find

b(q,q)=	
2∑

i=1

∫
�∪�′

|gradui |2 dx=a(u,u)�C‖u‖2V�C‖q‖2
H−1/2
00 (�)

due to the already shown isomorphism between u and q defined by (24).
Thus the bilinear form b(·, ·) is symmetrical and positive definite on H−1/2

00 (�). In consequence,
the Lax–Milgram theorem is applied, and we conclude that the variational problem (26) has a
unique solution q∈H−1/2

00 (�). �
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Remark 3.1
Once q is obtained from variational problem (26), the solution (u, p) of problem (11)–(14) will
be determined by expressions (20) and (21). They are unique in the space (H1(�))2×(L2(�)/R)

or (W 1
0 (�′))2×L2(�′).

3.2. Approximation

Let

Vh(�)=span{�i ,1�i�N }
the basis functions �i defined in (3). Observe that, since �i (x)∈C�

0(�i ), x∈�, then �i (x)∈
C�(�), 1�i�N . Thus, if − 1

2�m��, one gets �i (x)∈Hm(�)⊂H−1/2(�). Besides, we have from
Property 2.1 that the constant is included in the space Vh(�). Let

◦
Vh(�)=

{
f ∈Vh(�),

∫
�
f

2∑
j=1

� j n j dS=0,∀n∈R2

}

then the variational problem (26) can be approximated by

Find qh ∈ ◦
Vh/R such that ∀q ′ ∈ ◦

Vh/R

b(qh,q
′) = 〈g,q ′〉

(27)

In this way, we must take into account the constraint

∫
�
qh

2∑
j=1

� j n j dS=0 ∀n∈R2 (28)

in the process of approximation. For the convenience of numerical implementation, we prefer
another approach: By introducing a Lagrangian multiplier to replace the constraint (28), we define
a bilinear form

e(n,qh)=
∫

�
qh

2∑
j=1

� j n j dS ∀qh ∈Vh, n∈R2 (29)

then solve another variational problem as the following instead of (27):

Find (qh,n) ∈ (Vh/R)×R2 such that ∀(q ′,n′)∈(Vh/R)×R2

b(qh,q
′)+e(n,q ′) = 〈g,q ′〉

e(n′,qh) = 0

(30)

Theorem 3.3

The variational problem (27) has one and only one solution qh ∈ ◦
Vh/R and there exists a constant

vector n∈R2 such that (qh,n) is the unique solution of variational problem (30). Besides, there
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exists a constant C such that

‖q−qh‖H−1/2(�)/R �C

{
inf

q ′∈Vh/R
‖q−q ′‖H−1/2(�)/R + inf

n′∈R2
‖n−n′‖R2

}

=C inf
q ′∈Vh/R

‖q−q ′‖H−1/2(�)/R (31)

Proof
According to Brezzi [32] and Girault and Raviart [33], we need to verify just the following two
assumptions:

(i) There exists a constant C∗ >0 such that

b(qh,qh)�C∗‖qh‖2H−1/2(�)/R
∀qh ∈Vh/R

(ii) There exists a constant C∗∗>0 such that

sup
qh∈Vh/R

e(n,qh)

‖qh‖Vh/R
�C∗∗‖n‖R2 ∀n∈R2

The first assumption is satisfied because of the result of Theorem 3.2, since qh ∈Vh/R implies
qh ∈H−1/2(�)/R. For the second assumption, take qh =n ·n to obtain

sup
qh∈Vh/R

e(n,qh)

‖qh‖Vh/R
�
∫
� (n·n)2 dS

‖n ·n‖Vh/R
�

‖n·n‖2
L2(�)

C1‖n·n‖L2(�)

= 1

C1
‖n ·n‖L2(�)�C∗∗‖n‖R2

Thus the proof is complete. �

On Vh(�)/R, the Galerkin approximation qh of the real solution q may be read as

qh(x)=
N∑
i=1

�i (x)qi (32)

Substituting (32) into (30), by virtue of Property 2.2, one gets{[a ji ] [c jk]
[bki ] [0]

}{ {qi }
{�k}

}
=
{{ f j }

{0}

}
, i, j =1,2, . . . ,N , k=1,2 (33)

where

a ji =
2∑

m,l=1

∫
� j

∫
�i
Uml(x,y)nl(x)�i (x)nm(y)� j (y)dSx dSy

c jk =bk j =
∫

� j
� j (y)nk(y)dSy

f j =
∫

� j
g(y)� j (y)dSy

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1201–1226
DOI: 10.1002/fld



1212 X. LI AND J. ZHU

in which � j and �i are defined by (1), and are parts of the boundary �. As in the EFGM [11]
and the BNM [24], these integrations can be numerically calculated by employing a cell structure.

Remark 3.2
Since the cell can be of any shape and the only restriction is that the unions of all cells equal the
integral area, the concept of cell is quite different from that of an element in the BEM. Thus, the
proposed method is a boundary-type meshless method.

Remark 3.3
The boundary function g(y) are multiplied by � j (y) and integrated on �. As a consequence,
boundary conditions can be implemented accurately despite of the fact that the MLS approximations
lack the delta function property.

Remark 3.4
The system matrix in (33) is symmetric.

4. ERROR ESTIMATES

In this section, we will prove that the result obtained using our meshless Galerkin method converges
to the solution of the problem (11)–(14) gradually. First, for the MLS Galerkin solution qh of (27),
we have the following error estimate.

Theorem 4.1
Let q and qh be the solutions of the problems (26) and (27), respectively. If q∈H−1/2

00 (�)∩
(Hm+1(�)/R), then

‖q−qh‖H−1/2(�)/R�Chm+3/2‖q‖Hm+1(�)/R, 0�m�� (34)

where C is a constant independent of h.

Proof
According to Theorem 3.3, we have

‖q−qh‖H−1/2(�)/R�C inf
q ′∈Vh/R

‖q−q ′‖H−1/2(�)/R (35)

Since q ′ is an arbitrary element in Vh/R, let

q ′ = Shq

where Sh denotes a projection from L2(�)/R onto Vh/R. Note that qh �= Shq . Hence,

‖q−qh‖H−1/2(�)/R�C‖q−Shq‖H−1/2(�)/R (36)

From Property 2.1 we have Mc=c for any c∈R; thus, applying Theorem 2.1 yields

‖q−Mq‖Hk(�)/R�Chm+1−k‖q‖Hm+1(�)/R, 0�k�m��

Then

‖q−Shq‖H0(�)/R�‖q−Mq‖H0(�)/R�Chm+1‖q‖Hm+1(�)/R, 0�m�� (37)
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Thus, according to a classical duality argument we deduce

‖q−Shq‖H−1(�)/R = sup
f ∈H1(�)/R

〈q−Shq, f 〉
‖ f ‖H1(�)/R

= sup
f ∈H1(�)/R

〈q−Shq, f −Sh f 〉
‖ f ‖H1(�)/R

� sup
f ∈H1(�)/R

‖q−Shq‖H0(�)/R‖ f −Sh f ‖H0(�)/R

‖ f ‖H1(�)/R

�Chm+2‖q‖Hm+1(�)/R, 0�m��

Hence, using an interpolation theorem of Sobolev spaces [34] leads to
‖q−Shq‖H−1/2(�)/R � ‖q−Shq‖1/2

H0(�)/R
‖q−Shq‖1/2

H−1(�)/R

�Chm+3/2‖q‖Hm+1(�)/R, 0�m�� (38)

Finally, substituting (38) into (36) ends the proof. �

Theorem 4.2
Let 1

2�k��+2, then under conditions of Theorem 4.1,

‖q−qh‖H−k(�)/R�Chm+1+k‖q‖Hm+1(�)/R, 0�m�� (39)

Proof
Write Aq for the right hand of (23), then operator A has the symmetry and A is an isomorphism
from Hk−1(�)/R onto Hk

0 (�), where

Hk
0 (�)=

{

∈Hk(�),

∫
�


dS=0

}

Using the dual theory, we have

‖q−qh‖H−k(�)/R = sup
�∈Hk

0 (�)

|〈q−qh,�〉|
‖�‖Hk

0 (�)

= sup
�∈Hk

0 (�)

|〈A(q−qh), A−1�〉|
‖�‖Hk

0 (�)

(40)

Clearly we have

‖A−1�‖Hk−1(�)/R�C‖�‖Hk
0 (�), k� 1

2 (41)

On the other hand,

〈A(q−qh), A
−1�〉=〈A(q−qh), A

−1�−Sh(A
−1�)〉+〈A(q−qh), Sh(A

−1�)〉
where Sh denotes a projection from L2(�)/R onto Vh/R. From (26) and (27) we get

〈A(q−qh), Sh(A
−1�)〉=0
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Besides, according to the continuity of the bilinear form b(·, ·)=〈A·, ·〉 and using Theorem 4.1
and (38), we obtain

〈A(q−qh), A
−1�−Sh(A

−1�)〉 �C‖q−qh‖H−1/2(�)/R‖A−1�−Sh(A
−1�)‖H−1/2(�)/R

�Chm+1+k‖q‖Hm+1(�)/R‖A−1�‖Hk−1(�)/R

with 1
2�k��+2 and 0�m��. Thus

〈A(q−qh), A
−1�〉�Chm+1+k‖q‖Hm+1(�)/R‖A−1�‖Hk−1(�)/R (42)

Consequently, the conclusion of the theorem follows from (40)–(42). �

Remark 4.1
Theorem 4.2 shows the highest rate of the convergence achieved by our Galerkin method for the
density function q as O(h2�+3) in H−�−2(�)/R.

Now we are in a position to estimate an error between the solution (u, p) given by (20) and
(21) and the approximate solution (uh, ph) given by the following expression:

uhi (y)=
2∑
j=1

∫
�
qh(x)Ui j (x,y)n j (x)dSx+�i , y∈R2, i=1,2 (43)

ph(y)=−
2∑
j=1

∫
�
qh(x)Pj (x,y)n j (x)dSx, y∈R2/� (44)

Theorem 4.3
If (u, p) is given by (20) and (21), (uh, ph) is given by (43) and (44), then we have a constant C
independent of h such that

‖(u−uh, p− ph)‖(H1(�))2×(L2(�)/R)+‖(u−uh, p− ph)‖(W 1
0 (�′))2×L2(�′)

�Chm+3/2‖q‖Hm+1(�)/R, 0�m�� (45)

Proof
According to the arguments in Section 3.1, we actually know that (20) defined an isomorphism
from H−1/2

00 (�) onto H1(�)∪W 1
0 (�′), and (21) defined an isomorphism from H−1/2

00 (�) onto
(L2(�)/R)∪L2(�′). Thus, using Theorem 4.1 we have

‖ui −uhi‖H1(�)�C‖q−qh‖H−1/2(�)/R�Chm+3/2‖q‖Hm+1(�)/R, i=1,2

‖p− ph‖L2(�)/R�C‖q−qh‖H−1/2(�)/R�Chm+3/2‖q‖Hm+1(�)/R

Similarly, the same inequalities with �′ as above can be obtained. By gathering these estimates
we end the proof. �
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Theorem 4.4
For ∀y∈R2 with d(y,�)=minx∈�{|x−y|}��, we have

|��u(y)−��uh(y)| �C

(
�+2∑
l=0

(d(y,�))−l−|�|
)
hm+�+3‖q‖Hm+1(�)/R (46)

|�� p(y)−�� ph(y)| �C

(
�+2∑
l=0

(d(y,�))−l−|�|
)
hm+�+3‖q‖Hm+1(�)/R (47)

where 0�m��, |�|=�1+�2�0, C is a constant independent of h.

Proof
From (20) and (43) one gets

|ui (y)−uhi (y)| =
∣∣∣∣∣

2∑
j=1

∫
�

(q(x)−qh(x))Ui j (x,y)n j (x)dSx

∣∣∣∣∣
� ‖q−qh‖H−�−2(�)/R

2∑
j=1

‖Ui jn j‖H �+2
0 (�)

, i=1,2 (48)

Because of d(y,�)��>0, we have

2∑
j=1

‖Ui j (x,y)n j (x)‖H �+2
0 (�)

�C
2∑
j=1

‖Ui j (x,y)‖H �+2(�)�C
�+2∑
l=0

(d(y,�))−l (49)

Besides, it follows from Theorem 4.2 that

‖q−qh‖H−�−2(�)/R�Chm+�+3‖q‖Hm+1(�)/R, 0�m�� (50)

By gathering (48)–(50) we can prove (46) for |�|=0. Other cases are similar. �

Remark 4.2
Contrary to the case of the domain-type methods, such as the FEM, Theorem 4.4 indicates that
the errors of (u, p) and their derivates in our Galerkin method are all of the same order.

Theorem 4.4 obtained the error of (u, p) and their derivatives outside the neighborhood of �;
the following theorem will give the error inside the vicinity of the boundary.

Theorem 4.5
There exists �>0, for ∀y∈R2 with d(y,�)<� and for given ε>0, we have

|u(y)−uh(y)|�C(�)hm+1−ε‖q‖Hm+1(�)/R, ε�m��

Proof
If ε>0, one gets

|ui (y)−uhi (y)|�‖q−qh‖H ε(�)/R

2∑
j=1

‖Ui j (x,y)n j (x)‖H−ε
0 (�), i=1,2 (51)
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Let k=2/(1+ε), then 0<k<2; thus, according to the Sobolev imbedding theorem, L2(�) ↪→
Lk(�) ↪→H−ε(�), so that

2∑
j=1

‖Ui j (x,y)n j (x)‖H−ε
0 (�) �C

2∑
j=1

‖Ui j (x,y)‖H−ε(�)

�C‖ln|x−y|‖H−ε(�)

�C‖ln|x−y|‖L2(�)

Let �∗ ={x∈� : |x−y|<�}, �y=maxx∈� |x−y|, then

‖ln |x−y|‖2L2(�)
=
∫

�/�∗
|ln |x−y||2 dSx+

∫
�∗

|ln |x−y||2 dSx

�
∫

�/�∗
(max{|ln�y|, |ln�|})2 dSx

+�|ln�|2+2�|ln�|+2
∫

�∗
dSx

�mes(�)(max{|ln�y|, |ln�|})2

+�|ln�|2+2�|ln�|+2mes(�)

so

2∑
j=1

‖Ui j (x,y)n j (x)‖H−ε
0 (�)�C(�) (52)

Besides, using the triangle inequality yields

‖q−qh‖H ε(�)/R�‖q−Shq‖H ε(�)/R +‖Shq−qh‖H ε(�)/R

On the one hand, according to Property 2.3, Theorem 2.1, and (37) we have

‖q−Shq‖H ε(�)/R � ‖q−Mq‖H ε(�)/R +‖Mq−Shq‖H ε(�)/R

� ‖q−Mq‖H ε(�)/R +Ch−ε‖Mq−Shq‖H0(�)/R

� ‖q−Mq‖H ε(�)/R

+Ch−ε{‖Mq−q‖H0(�)/R +‖q−Shq‖H0(�)/R}
�Chm+1−ε‖q‖Hm+1(�)/R, ε�m��

and, on the other hand, from Property 2.3, Theorem 4.1, and (38) we also have

‖Shq−qh‖H ε(�)/R �Ch−1/2−ε‖Shq−qh‖H−1/2(�)/R

�Ch−1/2−ε(‖Shq−q‖H−1/2(�)/R +‖q−qh‖H−1/2(�)/R)

�Chm+1−ε‖q‖Hm+1(�)/R, ε�m��
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Thus

‖q−qh‖H ε(�)/R�Chm+1−ε‖q‖Hm+1(�)/R, ε�m�� (53)

The proof is completed via collecting (51)–(53). �

Remark 4.3
We have no error estimates of �u/�n and p in the vicinity of the boundary. That is because they
are discontinuous through �.

5. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to demonstrate the accuracy and efficiency
of the proposed meshless method. In all examples, we use uniform particle distribution. For
simplicity, we always assume that the viscosity of the fluid is taken as one. Besides, the polynomial
basis is chosen as a quadratic basis, and the weight function is a cubic spline function [11]

wi (x)=

⎧⎪⎪⎨
⎪⎪⎩

2
3 −4d2+4d3, d� 1

2

4/3−4d+4d2−4d3/3, 1
2<d�1

0, d>1

where d=|x−xi |/h, h is the radius of the weight functions. In all examples, h is taken to be
3.5d̄, with d̄ as the nodal spacing.

5.1. Flow between two parallel plates

Consider a unidirectional flow between two parallel plates (Figure 1). The fluid is subjected to
a step pressure differential, p= p0(1−x1/L). The x2-component velocity vanishes everywhere,
u2=0, and the x1-component velocity is a function of x2 only, u1=u1(x2). With these conditions,
the analytical solution can be given by [36] as

u1(x2)= p0b

2L	
x2
(
1− x2

b

)
The problem is solved as a 2-D problem with slip boundary conditions. Although the solution in
dimensionless form is independent of the geometry, a rectangle domain of L=2b and b=√

2 is
chosen. Besides, the parameter p0 is equal to L .

Figure 2 displays a comparison between the present numerical results with the exact solutions
for the x1-component velocity and its derivatives. In this analysis, we applied 24 boundary nodes.
The node distribution on the rectangle domain is as shown in Figure 1. It is evident that the results
agree well with the analytical solution.

To show the convergence of the presented method, regularly distributed 12, 24, 48, and 96 nodes
are used. In this study, the ratio of the number of nodes on A1A2 and A3A4 to that on A1A4
and A2A3 is kept constant and equal to two. The results of convergence of (u, p) are shown in
Figure 3. It is observed that the numerical rate matches our theoretical result.

For investigating the behavior of points far away from the boundary and near the boundary, the
values of the numerical approximations of (u, p) and their derivates at some inner points are given
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Figure 1. Steady flow between two parallel plates.

Figure 2. Results of u1 and its derivates along the line x1= x2.

in Table I. The results show that the error decreases with the increase of the boundary nodes. The
numerical convergence rates of (u, p) and their derivates match our theoretical results for points
far away from the boundary. While points lie in the neighborhood of �, the numerical results of
u also confirm the theoretical error statements.

5.2. Flow around a rectangular cylinder between two parallel plates

In this example, we solve the problem of fluid flow around an infinitely long rectangular cylinder and
in the middle of the channel bounded by two parallel plates (see Figure 4). Because of symmetry,
only one-quarter of the problem domain is taken into consideration. For ease of comparison,
the geometry is chosen as L1= L2=2, b1=b2=1 and, in addition, the exact solution for this
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Figure 3. Convergence of flow between two parallel plates.

Table I. Approximations and convergence rates for parallel plates flow.

Numerical solutions

x1, x2 N =12 N =24 N =48 N =96 Exact Rates

1.5, 2.1 u1 −0.697146 −0.721421 −0.720031 −0.720110 −0.720076 3.31
u1,x1 −0.031335 −0.018834 −0.000113 −0.000107 0.000000 3.20
u1,x2 −1.337429 −1.422490 −1.388958 −1.392828 −1.392893 3.21
u2 −0.023988 0.002745 −0.000286 −0.000025 0.000000 3.30
u2,x1 0.042903 −0.012094 0.003236 −0.000035 0.000000 3.26
u2,x2 0.031335 0.018833 0.000113 0.000107 0.000000 3.20
p,x1 −1.450490 −1.045208 −1.015424 −1.000033 −1.000000 4.27
p,x2 0.711135 −0.218806 0.022114 −0.000013 0.000000 5.04

2.0, 1.100 u1 0.178116 0.175553 0.172171 0.172799 0.172817 2.65
2.0, 1.050 u1 0.209352 0.193522 0.191859 0.191084 0.191212 2.33
2.0, 1.010 u1 0.217676 0.211757 0.207264 0.203890 0.204128 1.88
2.0, 1.005 u1 0.217715 0.210951 0.207391 0.206622 0.205630 1.24

problem is

u1= x1(x
2
1 +2x1+3x22)+2(x2−1)2+ 8

3

u2=−x2(3x
2
1 +4x2+x22)+4x1+2

p=6(x21 −x22)+8x1+ p0

where p0 is a constant. Along the channel walls and the rectangular cylinder surface, the slip
conditions are prescribed.
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Figure 4. Flow around a rectangular cylinder between two parallel plates.

Figure 5. Arrangement of nodes.

The node distribution is as shown in Figure 5. In this analysis, we applied 64 boundary nodes.
The comparison of the exact solutions and numerical solutions for (u, p) and their derivates are
plotted in Figures 6–8. The numerical solutions are seen to capture the behavior of the exact
solutions very well. We remark that the pressure is only determined up to a constant, and in this
case p0=4.8468. Besides, the velocity field inside the solution domain is plotted in Figure 9 and
shows the correct fluid motion. Moreover, Figure 10 depicts the computed results of the contour
of pressure.

When four different regular node arrangements of 8, 16, 32, and 64 nodes have been used,
the convergence rates are plotted with respect to Sobolev norms in Figure 11. It is true that the
numerical rates match our theoretical results.

The values of the numerical results of (u, p) and their derivates at some inner points far away
from the boundary are displayed in Table II. Besides, the numerical solutions of the x1-component
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Figure 6. Results of u1 and its derivates along the line x2=0.75.

Figure 7. Results of u2 and its derivates at the section x2=0.75.

velocity at points near the boundary are shown in Table III. As we expected, the results from the
proposed meshless method gradually converge to the exact values along with the decrease of the
radii of the weight functions, and the numerical results also confirm theoretical analysis.

6. CONCLUSIONS

In this study, we have developed a meshless Galerkin method for direction solution of 2-D incom-
pressible slip Stokes flows. It is a boundary-type meshless method, which combines scattered
points and BIEs. The main attractive features of this methodology are the following:

(1) The simple layer potential used for the Stokes problem is combined with the slip boundary
condition. This fact leads to a set of BIEs of the first kind and the problem of finding velocity
and that of finding pressure can be separated. Besides, the expressions of the velocity and
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Figure 8. Pressure p and its derivates along x2=0.75.

Figure 9. Velocity vectors.

the pressure are suitable for the interior as well as the exterior problems. Thus compared
with the domain-type methods, such as the EFGM, the RKPM, and the LBIE method, the
new approach reduces the dimensionality of the original problem.

(2) The numerical analysis is based on the variational formulation of BIEs. Thus, implementing
boundary conditions in this method is much easier than that in other meshless methods, such
as in the BNM, the BCM, and the EFGM, in which the MLS is introduced also. Besides, the
system matrices are symmetric, which provides an added advantage in coupling this method
with the FEM or other domain-type meshless methods for the problems with unbounded
domain.
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Figure 10. Pressure contour.

Figure 11. The convergence rate.

(3) For tackling constraint conditions of trial functions, a Lagrangian multiplier is introduced
in the process of numerical approximation.

(4) The MLS approximations are used to generate trial and test functions. This technique leads
to the fact that the proposed method is a meshless method, which only requires a nodal data
structure on the bounding surface of the domain to be solved.
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Table II. Approximations of (u, p) for points far away from the boundary.

Numerical solutions

x1, x2 N =8 N =16 N =32 N =64 Exact Rates

0.15, 0.40 u1 3.571248 3.488134 3.506673 3.507107 3.507042 3.55
u1,x1 1.799914 1.213746 1.156641 1.148231 1.147500 3.23
u1,x2 −3.194040 −2.044789 −2.048093 −2.040184 −2.040000 3.71
u2 2.253723 2.260139 2.269347 2.269025 2.269000 3.24
u2,x1 2.736017 2.041131 2.033679 2.039720 2.040000 3.14
u2,x2 −1.799914 −1.213746 −1.156641 −1.148231 −1.147500 3.23
p,x1 6.745009 12.20920 9.937532 9.802540 9.800000 3.48
p,x2 −9.274094 −4.409383 −4.927565 −4.804245 −4.800000 3.17

0.70, 0.75 u1 5.630939 5.263234 5.295569 5.296119 5.295917 3.86
u1,x1 7.514424 5.837650 5.925785 5.956544 5.957500 3.39
u1,x2 2.217436 2.228257 2.160985 2.149993 2.150000 4.25
p,x1 2.890770 20.97290 16.23293 16.38105 16.40000 3.32
p,x2 −6.414485 −10.03502 −9.006113 −8.994141 −9.000000 3.38

Table III. Approximations of u1 for points near the boundary.

Numerical solutions

x1, x2 N =8 N =16 N =32 N =64 Exact Rates

0.1000, 0.5 3.183692 3.260215 3.264074 3.262708 3.262667 3.35
0.0100, 0.5 3.111812 3.188223 3.176271 3.173834 3.174368 2.35
0.0010, 0.5 3.114021 3.195793 3.180477 3.171381 3.167419 1.24
0.0001, 0.5 3.113416 3.195641 3.180238 3.171373 3.166742 1.17

The error estimates for the proposed method in Sobolev spaces have been presented, which show
that the error bound of the numerical solution is directly related to the radii of the weight functions.
Besides, velocity, pressure, and their successive derivatives possess L∞-superconvergence outside
the neighborhood of �. Moreover, we have got the convergence of velocity in L∞ norm in the
vicinity of �.

Some examples have been given and the numerical results are accurate and are in agreement with
the theoretical orders of convergence. The proposed method can be extended to solve nonlinear or
non-stationary problems by reducing them to linear and stationary ones with the help of perturbation
and time-stepping procedures.
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